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Abstract
This study proposed an integrated dataset-preparation system for ML-based medical image diagnosis, offering high clinical 
applicability in various modalities and diagnostic purposes. With the proliferation of ML-based computer-aided diagnosis 
using medical images, massive datasets should be prepared. Lacking of a standard procedure, dataset-preparation may become 
ineffective. Besides, on-demand procedures are locked to a single image-modality and purpose. For these reasons, we intro-
duced a dataset-preparation system applicable for a variety of modalities and purposes. The system consisted of a common 
part including incremental anonymization and cross annotation for preparing anonymized unprocessed data, followed by 
modality/subject-dependent parts for subsequent processes. The incremental anonymization was carried out in batch after 
the image acquisition. Cross annotation enabled collaborative medical specialists to co-generate annotation objects. For 
quick observation of dataset, thumbnail images were created. With anonymized images, preprocessing was accomplished 
by complementing manual operations with automatic operations. Finally, feature extraction was automatically performed 
to obtain data representation. Experimental results on two demonstrative systems dedicated to esthetic outcome evaluation 
of breast reconstruction surgery from 3D breast images and tumor detection from breast MRI images were provided. The 
proposed system successfully prepared the 3D breast-mesh closures and their geometric features from 3D breast images, 
as well as radiomics and likelihood features from breast MRI images. The system also enabled effective voxel-by-voxel 
prediction of tumor region from breast MRI images using random-forest and k-nearest-neighbors algorithms. The results 
confirmed the efficiency of the system in preparing dataset with high clinical applicability regardless of the image modality 
and diagnostic purpose.

Keywords Computer-aided diagnosis · Machine learning · Dataset preparation · Anonymization · Cross annotation · 
Feature extraction

Introduction

Machine learning-based computer-aided diagnosis (ML-
based CAD) is a field that involves analyzing large data-
sets of patient data, particularly medical images, to assist 
clinicians in decision-making. Numerous studies in this 
field have been conducted on different subjects and image 
modalities such as the characterization of breast tumors with 
MRI scans [1–3], the detection of cerebral aneurysms with 
CT angiographies [4, 5], and the detection of lung nodules 
with chest X-rays [6, 7]. Within such studies, the dataset 
serves as the foundation upon which ML models are trained, 
directly influencing performance of a CAD system. How-
ever, preparation of the dataset entailed difficulty due to the 
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repeat of hard-to-automate processes such as image acquisi-
tion, anonymization, annotation and preprocessing, therefore 
required additional time and effort from research partici-
pants. Several studies, including our earlier work, proposed 
comprehensive process flows to address the difficulty and 
efficiently prepare the dataset [8, 9]. Nevertheless, our pre-
viously proposed process flow was still rigid, as it required 
a complete re-implementation when dealing with another 
image modality and diagnostic purpose. As a result, this 
study improves our former study by reorganizing processes 
into common and modality/subject-dependent parts, there-
fore enabling the system to be partly reusable on different 
joint-research projects regardless of image modality and 
diagnostic purpose. To evaluate its effectiveness, we intro-
duce two demonstrations related to breast cancer diagnosis.

Breast cancer diagnosis is a typical example of ML-based 
CAD applications. Advanced techniques allow early detec-
tion and treatment of the cancer with an excellent survival 
expectation. By providing detailed images of breast tis-
sue through MRI scans, precise information about tumor 
size, location, and proximity to surrounding structures can 
be realized with popular ML algorithms. Furthermore, an 
extensive amount of quantitative data extracted as radiomics 
features from the tumor region can be helpful in diagnosis 
and prognosis since they are believed to reveal underlying 
mechanisms at genetic and molecular levels [10]. Mean-
while, some researchers have shifted their focus to long-term 
esthetic outcomes following breast reconstruction surgery 
due to the cancer treatment. Various developed tools have 
been introduced such as the Breast Cancer Conservative 
Treatment (BCCT.core) [11], the Breast Analyzing Tool 
(BAT) [12] and the  kOBCS© [13] to overcome the subjec-
tivity and provide reliability in the evaluation of esthetic 
outcome. Among these, BCCT.core was utilized in some 
recent studies [14, 15], however, it is challenging to perform 
collective evaluation of multiple cases due to its require-
ments of interactive operations in every step.

The rest of this paper is structured as follows. “Dataset 
Preparation in ML-Based Medical Image Diagnosis” sec-
tion presents our improved procedure for dataset prepara-
tion in ML-based CAD. “Procedure of Image Acquisi-
tion, Anonymization and Annotation” section describes 
the implementation of the common process part for two 
demonstrative systems. The processing specific to each of 
the demonstrative systems is introduced in “Processing of 
3D Breast Images for Geometric Feature Extraction” and 
“Processing of Breast MRI Images for Radiomic Feature 
Extraction” sections. Finally, “Conclusion” section offers a 
summary of the main contributions drawn from this study.

Dataset Preparation in ML‑Based Medical 
Image Diagnosis

In practice, ML-based CAD systems require the coopera-
tion from different participant groups including medical 
institution, collaborative medical specialists, and research 
institution to prepare a large number of training datasets. 
Nonetheless, such cooperation may lead to issues in data 
consistency, confidentiality and interoperability unless 
a well-organized procedure is established. The expected 
procedure should not only address these issues but also be 
widely applicable to a variety of image modalities for dif-
ferent diagnostic purposes. Accordingly, we developed a 
novel dataset preparation process for ML-based CAD and 
its schematic representation is shown in Fig. 1. Briefly, 
it consists of a common part for generating anonymized 
and unprocessed exchanging data, followed by modality/
subject-dependent parts for processing these data into a 
final dataset targeting specific diagnostic purposes.

Common Part for Image Acquisition, Anonymization 
and Annotation

The common part aims to generate an anonymized ver-
sion of unprocessed data for exchanging among participant 
groups. Since implementation of processes in this part is 
either similar or falls under few anticipated cases, it is 
expected to be highly reusable across different research.

Medical institutions perform image acquisition, incre-
mental anonymization and filtering. As part of routine tasks, 
it is favorable to commonly adopt a predefined configura-
tion when acquiring clinical images from individual patients. 
Then, these images and sensitive information are securely 
stored in a confidential media. Occasionally, anonymization 
and filtering are carried out for multiple patients at once 
to generate anonymized images with less effort. Required 
objects/tools for sending annotation requests to medical spe-
cialists are also prepared in advance. As for the annotation 
form, employing an Optical Character Recognition (OCR) 
design will accelerate subsequent data collection and error 
correction at research institution.

Collaborative medical specialists from the medical insti-
tution in which the clinical images are acquired or other 
institutions are requested to perform the manual annotation. 
By observing given anonymized images, specialists reflect 
their diagnosis and findings as ROI bounding box, ROI mask 
or information filled into the annotation form. Each exami-
nation case is supposed to undergo multiple times of annota-
tion by different specialists, ensuring a thorough evaluation.

Eventually, outcome of the common part consists of 
anonymized images and annotation objects like filled 
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forms and ROI masks, which are stored in a data transfer 
media. Since this media serves as a hub for the interac-
tion among participant groups, data consistency and inter-
operability are guaranteed. Meanwhile, confidentiality is 
maintained through incremental anonymization. By widely 
applying the workflow of this part across studies, unnec-
essary variation of procedures due to difference in image 
modality and diagnostic purpose can be alleviated.

Modality/Subject‑Dependent Part for Preprocessing 
and Feature Extraction

This part aims to transform anonymized images into fea-
ture primitive, generate thumbnail images, and collect valid 
annotation data. Then, its resulting final dataset is utilized 

for ML model training and validation. Unlike the common 
part, processes in this part are tailored to deal with specific 
image modality for particular diagnostic purpose.

Annotation objects prepared by medical specialists may 
not be immediately usable for calculation by the research 
institution because of their paper-based representation or 
their mismatch with desired format. In order to quickly 
access the data in filled annotation forms, the use of an 
OCR device is necessary. From the fields and data recog-
nized by OCR, error correction is performed to confirm the 
data validity. As for the received ROI markups in form of 
mask and bounding box, further checks are required to com-
pare their spatial dimension with corresponding anonymized 
image and to ensure a mutual agreement of markup locations 
among different annotators. Next, transforms including value 

Fig. 1  Process flow of dataset 
preparation dedicated to ML-
based CAD
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range standardization and format conversion can be executed 
on qualified markups. Annotation data qualified from the 
data collection and error correction process are then saved 
to the final dataset.

Since clinical images are often stored in specialized for-
mats such as DICOM or NIfTI, they may be incompatible 
with popular image viewers and their previews within the 
dataset are not possible. The use of dedicated software, how-
ever, comes at high cost in terms of time and memory. For 
these reasons, thumbnail images are created as a compact 
representation of clinical images, enabling quick observa-
tion of multiple images in the dataset without loading them.

Regarding the preprocessing, it can be enhanced by 
incorporating complementary automatic tasks following 
hard-to-automate tasks. From the entire or local region 
of each processed image, feature primitives such as pixel-
value statistics, geometric features, or transformed image 
are extracted and appended to the final dataset. At the end, a 
particular ML model is trained and validated by employing 
the prepared dataset.

The proposed process flow can be reused in other stud-
ies of ML-based medical image diagnosis with high clini-
cal applicability regardless of image modality or diagnostic 
purpose. Its common part facilitates the participation in 
cross annotation from external collaborators while securing 
patient privacy through automated anonymization of clinical 
images. By breaking the system down into parts, new modal-
ity/subject-dependent parts can be added and customized 
without disrupting the existing procedure of the common 
part.

Procedure of Image Acquisition, 
Anonymization and Annotation

In this section, implementation derived from a common pro-
cedure for incremental anonymization and cross annotation 
of two demonstrative applications utilizing 3D breast images 
and breast MRI images is described. Further processing of 
each application will be presented in subsequent sections.

For the application of breast esthetic outcome evaluation, 
3D images were prepared through the use of a handheld 
depth camera (Intel Realsense L515 [16]) to reflect the shape 
aspects of the breast. For the application of breast tumor 
detection, various T1-weighted MRI images were acquired 
by 1.5 T or 3 T scanners to reflect the tissue structures inside 
the breast before and after contrast enhancement.

Regarding the anonymization, personal information that 
reveals patient’s identity was completely removed both in 
folder name, file name, file header, and image content from 
acquired images, while some non-personal information 
remained for certain purposes. Particularly, some exam-
ination-related information in folder name and file name 

can be included, such as patient ID, acquisition date, and 
acquisition parameters (like MRI sequence and sequence 
order in MRI images), for ease of study organization. As 
for the file header, some demographic information such as 
sex, age, and weight can be provided. In the case of MRI 
header, information dedicated to image orientation and posi-
tion, slice thickness, pixel spacing were included to ensure 
interoperability and compatibility across different imaging 
systems. As for image content, patient faces must be avoided 
in all images. The incremental anonymization was automati-
cally performed on a regular basis and on only newly added 
images, therefore it eliminated the repeated anonymization 
of previously processed images.

Regarding the cross annotation, anonymized 3D breast 
images and corresponding OCR-compatible annotation 
sheets were distributed to collaborative medical specialists 
for filling their diagnoses. In case of breast MRI images, 
coordinates of bounding boxes encapsulating the breast 
tumor were given by the dataset provider. Based on these 
boxes, which were drawn by eight radiologists, we also pre-
pared the tumor mask for selected images using the Segmen-
tation module in 3D Slicer software. Various types of anno-
tation are expected to serve a wider spectrum of analyses.

Processing of 3D Breast Images 
for Geometric Feature Extraction

The processing of 3D breast images for esthetic outcome 
evaluation and its typical output are depicted in Fig. 2. Since 
they were thoroughly described in our earlier study [8], this 
section aims to briefly review them from the perspective of 
modality/subject-dependent processing part.

The evaluation of postoperative breasts was based on fac-
tors such as breast size, height of the inframammary fold, 
and nipple position. Our research dealt with these factors by 
considering the disparities between the left and right breasts 
from several viewpoints including shape and appearance. For 
the time being, 3D breast meshes constructed from triangular 
cells and shared edges were adopted to serve as a standard 
shape-based viewpoint. Figure 2a presents the process of han-
dling these 3D breast meshes. It commenced by extracting 
the breast region which is a primary requirement for further 
calculation. It then continued with several hard-to-automate 
processes such as tracing the breast outline and identifying the 
cross marks and nipples. Then, automatic scaling and region 
extraction processes were carried out to collect a normalized 
breast mesh surface. In the next step, various geometric fea-
tures including volume, surface area, and center of gravity 
were automatically extracted from each breast mesh closure. 
Eventually, L-R contrast features based on the difference and 
the ratio of bilateral breasts were derived by comparing the 
geometric feature values between breasts. Besides 3D breast 
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images, their corresponding 2D images were also available 
as JPG files, therefore the thumbnail creation process was not 
needed. Processing procedure for such 2D images is not cov-
ered in this study.

As a result, four typical examples of extracted breast mesh 
closures and their feature primitives are presented in Fig. 2b. 
The mesh closures exposed a smooth polyhedral surface 
without any holes or splits. Based on these mesh closures, 
L-R contrast features such as volume ratio VL/VR and surface 
ratio SL/SR were calculated. Aside from that, esthetic scores 
averaged from evaluation scores of four specialists were also 
provided. The result revealed that as L-R features approached 
1.0, the esthetic scores became higher, indicating a strong cor-
relation between extracted features and esthetic outcome.

Processing of Breast MRI Images 
for Radiomics Feature Extraction

Aside from conventional 2D and 3D images used for 
assessing the external appearance of post-surgery breasts, 
MRI images provide a non-invasive method to explore 
internal breast structures and identify pertinent abnor-
malities. This section covers the adoption of the proposed 
integrated system to efficiently prepare a dataset of breast 
MRI images dedicated to breast tumor detection.

Fig. 2  a Process flow and b typical outputs in processing of 3D breast images
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Material

For demonstrative purpose, we utilized the breast MRI 
images from the publicly available Duke-Breast-Cancer-
MRI dataset [17], accessible online at the Cancer Imaging 
Archive website (www. cance rimag ingar chive. net). This 
dataset consists of 922 patients with biopsy-confirmed inva-
sive breast cancer and its preoperative MRI images were 
acquired by 1.5 T or 3 T scanners in the prone positions. 
The images were provided in DICOM format of axial plane 
and encompass non-fat saturated T1-weighted, fat-saturated 
gradient echo T1-weighted pre-contrast, and post-contrast 
sequences.

Patient identity information was completely removed in 
folder name, file name, file header, and image content from 
acquired images. In order to annotate the tumor position 
for each image, coordinates of tumor bounding boxes were 
provided by the dataset. Additionally, other annotation data 
was given in a worksheet file, for example, side of cancer 
(left or right) and Nottingham grade.

Creation of Thumbnail Images

Since the MRI images were in DICOM format and tumor 
masks were in NRRD format, the preparation of thumbnail 
images in a commonly-used file format, such as JPEG, will 
facilitate the immediate preview of multiple annotated MRI 
images. Figure 3 describes how a thumbnail image was gen-
erated from an MRI image and corresponding mask. The 
procedure begins by reading and considering each slice 
of the mask to select a representative slice. The selection 

criteria can be determined by slice-based measures such as 
mask area and mask diameter, or just by utilizing the mid-
dle slice of the mask. In our study, the slice with maximum 
mask area was chosen as the representative slice. With the 
chosen slice index, representative MRI and mask slices were 
extracted from the MRI image and its mask. Before creat-
ing the thumbnail image, some settings like mask appear-
ance (contour, filling, opacity), output image dimension, and 
file format should be selected. Finally, the thumbnail image 
was created by subsequently overlaying three layers from 
background to foreground: representative MRI slice, repre-
sentative mask slice, and other annotation data displayed as 
image caption.

Preprocessing and Feature Extraction

Anonymized MRI images were standardized by the resam-
pling process, followed by repeated sliding of an equilateral 
kernel to extract local features. The process flow for these 
operations is illustrated in Fig. 4.

Regarding the preprocessing, it is not appropriate to 
perform the analysis or comparison across multiple images 
since different MRI images in the dataset may not share the 
same voxel dimension or voxel aspect ratio. Consequently, 
resampling was carried out on MRI images to standardize the 
voxel dimension. In our system, MRI images were resampled 
to the common voxel dimension of 1 mm × 1 mm × 1 mm. In 
addition, corresponding masks need to be updated to align 
with the resampled MRI images.

For medical image processing, target structures are often 
presented within a smaller region of interest. The global 

Fig. 3  Process flow of preparing thumbnail images from MRI and mask images

http://www.cancerimagingarchive.net
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features are not suitable in these scenarios because they 
capture insights from the entire image as a whole, leading 
to the overlook of regional structures. For these reasons, 
local features are advantageous due to its ability to capture 
the texture within a specific region. To begin, an equilateral 
kernel slides over the entire or selective positions within the 
resampled MRI image and extracts the region encapsulated 
by the kernel. The size of the kernel decides the field of view 
of local structures; therefore, it should not be significantly 
larger or smaller compared to the typical size of target struc-
ture. At each kernel position, the extracted local region was 
used to calculate two classes of features including radiom-
ics features and likelihood features. Descriptions of these 
features are as follows.

• Radiomics features: These are quantitative features 
resulting from the conversion of medical images to mine-
able high-dimensional data. This process was driven by 
the belief that biomedical images reflect underlying 
pathophysiology, so their relationship can be revealed 
by extracting maximal information from care images 
[18, 19]. For demonstrative purposes, we extracted 15 
selective radiomics features representing the intensity 
distribution and texture from all voxels within the local 
region, regardless of the tumor mask. The list of these 
radiomics features is included in Fig. 5 and the meaning 
of each feature was described at [20].

• Likelihood features: Based on the empirical observation 
from various breast MRI images, the region associated 

with the tumor tends to have different average bright-
ness and heterogeneity compared to other regions. For 
this reason, likelihood features make use of voxel inten-
sity’s mean, standard deviation or their combinations like 
mutual sum or mutual product to characterize the prob-
ability of having tumor within the region.

Two classes of features mentioned above were adopted to 
validate our proposed system. The diagnosis is not limited 
to only our features, but other handcrafted features or those 
from deep learning can also be applicable.

Experimental Result

Time Performance

For selected MRI images acquired from Duke-Breast-
Cancer-MRI dataset, we referred to corresponding bound-
ing boxes and drew the tumor mask as NRRD (Nearly 
Raw Raster Data) file using the Segmentation module in 
3D Slicer software. As a result, the approximate duration 
to draw the tumor mask within the bounding box of size 
41.5 mm × 38.8 mm × 12 mm from an MRI image is 6 min. 
These additional tumor masks enable the visualization of 
real tumor shape, as well as the analysis of geometric, inten-
sity and texture inside the tumor.

To load and render one typical breast MRI image together 
with its tumor mask in 3D Slicer, it required roughly 1 min 
and 30 MB of memory. Meanwhile, it took about 7 s to 

Fig. 4  Preprocessing and feature extraction flow in breast MRI images
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generate a thumbnail image of less than 100 KB, which can 
be easily and quickly loaded at any time. The availability of 
thumbnail images enabled the preview through large collec-
tions of annotated MRI images.

As for preprocessing time, approximately 55 s were uti-
lized to resample an MRI image and its tumor mask by man-
ual manipulation with the Resample Scalar Volume module. 
In case the resampling was performed automatically, the 
expended time was only about 2.17 s.

Regarding the feature extraction, a kernel size of 
32 mm × 32 mm × 32 mm was adopted to capture tumors of 
moderate and big sizes. The extraction time at each kernel 
position with our Slicer Graphic User Interface (GUI) mod-
ule was about 0.035 s for 15 radiomics features and about 
0.001 s for four likelihood features. In the same manner, if 
the features are calculated for all kernel positions within a 
breast MRI image of size 300 mm × 300 mm × 185 mm, it 
will take approximately 7 days. However, the feature extrac-
tion can take significantly less time if it is carried out with-
out the GUI and on only selective kernel positions.

With time performance examined as above, the total dura-
tion is acceptable for preparing the dataset of various fea-
ture types. In addition, the availability of tumor masks and 
thumbnail images is believed to facilitate future analyses 

while maintaining a short generation time. Consequently, the 
proposed system is deemed appropriate to support medical 
image diagnosis with high clinical applicability.

Feature Effectiveness

Figure  5 shows the radiomics and likelihood features 
extracted from three typical kernel positions within a typical 
pre-contrast breast MRI image. These positions consisted of 
a position deep inside the tumor, a position where the kernel 
slightly overlaps with the tumor, and a position outside the 
tumor (control position). The kernel size was chosen to be 
32 mm × 32 mm × 32 mm. The last two columns, which pro-
vide the ratio of feature value between tumor-involved posi-
tions and control position, are useful to select best features 
for characterizing the tumor. Based on the presented result, 
we selected five features including InterquartileRange, 
Autocorrelation and ClusterShade from radiomics group, 
LocMeanxLocSTD and LocSTD from likelihood group for 
further investigation.

After selecting features, their data were extracted on 
various kernel positions from MRI images of multiple 
patients and utilized to train several machine learning 
models for detecting whether the kernel center is inside a 

Fig. 5  Typical output features of preprocessing flow in breast MRI images
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tumor or not. The purpose of these models is to confirm 
the feature effectiveness rather than to perform a complete 
tumor segmentation problem, which is beyond the scope of 
this paper. The model training experiment was described 
in Table 1. Particularly, 2514 data samples extracted from 
10 pre-contrast MRI images were organized into three dis-
tinct feature sets: radiomics with 15 features, likelihood 
with four features, and their combination with 19 features. 
Six models were trained from these feature sets and two 
algorithms including Random Forest (RF) and K-Near-
est Neighbors (KNN). RF models were trained with 100 
trees (n_estimators = 100), each tree used 1000 samples 
randomly drawn from the dataset (max_samples = 1000), 
and the number of features considered for splitting at each 
leaf node was set to the square root of the total number of 
features (max_features = 

√

Nf  ). KNN models made 
predictions by evaluating cosine distance from 10 nearest 
neighbors. The cosine distance was chosen because it is 
less affected by high-dimensional sparsity that some other 
distance metrics, like Euclidean distance, experience. The 
models were then assessed over tenfold cross validation and 
averages of precision, sensitivity, f1-score, accuracy, and 
speed (logarithmic inverse of training time) were treated 
as performance metrics. Precision assesses the correctness 
of positive predictions and is measured by the proportion 
of true positives from all predicted positives. Sensitivity 
(recall) evaluates the model’s ability to detect true positives, 

indicating the proportion of true positives among all actual 
positives. F1-score represents a balanced measure by taking 
the harmonic mean of precision and recall. Accuracy reflects 
the overall correctness of a model and is calculated as the 
proportion of correct predictions out of all predictions.

The results of model assessment are shown in Fig. 6. RF 
model for combined feature set achieved the best score in 
term of sensitivity (0.804), f1 (0.795), and accuracy (0.897), 
whereas RF model for radiomics achieved the best preci-
sion (0.821). As for KNN models, they were superior to RF 
models only in term of speed and combined feature set also 
attained the best performance. These results confirmed the 
effectiveness of radiomics and likelihood features and their 
potentials in breast tumor diagnosis with MRI images.

Conclusion

In this article, we have proposed an integrated dataset-
preparation system dedicated to ML-based medical image 
diagnosis with high clinical applicability, targeting any 
modality and diagnostic purpose. Processes in the proposed 
system were arranged into common part and modality/sub-
ject-dependent parts, with the common part encompassing 
general functions such as incremental anonymization and 
cross annotation, while the modality/subject-dependent parts 
accommodating functions tailored to specific modality and 

Table 1  Training experiments of tumor detection models

Dataset Feature set Algorithm Evaluation

Pre-contrast images: 10
Data samples: 2514
 (+) inside-tumor: 318
 (−) outside-tumor: 2196

Radiomics: 15
Likelihood: 4
Combined: 19

RF
KNN

Cross validation: tenfold
Metrics: averages of precision, sensitivity, f1-score, accuracy, and speed (logarithmic 

inverse of training time) after cross validation

Fig. 6  Performance comparison of tumor detection models



 SN Computer Science           (2024) 5:676   676  Page 10 of 11

SN Computer Science

purpose such as thumbnail creation, preprocessing and fea-
ture extraction. The incremental anonymization and filtering 
streamlined batch processing for acquired images, thereby 
reducing the workload of medical specialists. Then, cross 
annotation on anonymized images enables the privacy-
ensured and robust collaboration between different special-
ists. Depending on the format of clinical images, thumbnail 
images can be generated to provide a quick observation 
across the dataset. To accelerate the preprocessing and fea-
ture extraction, a process flow that combined manual and 
complementary automatic operations was also designed. Our 
system offered advantages in terms of procedure reusability, 
scalability, and confidentiality for joint projects with various 
modalities and purposes.

Two demonstrative systems were successfully employed 
to prove the effectiveness and high applicability of the 
developed procedure. Although each of them was associ-
ated with different image modality and different diagnos-
tic purpose, they can share similar implementation on the 
common process part. Subsequent processing, especially the 
feature extraction, was customized to each demonstrative 
system. System dedicated to plastic surgery evaluation from 
3D breast images competently prepared the datasets of 3D 
breast-mesh closures and their corresponding L-R contrast 
features. Preliminary result exhibited a strong correlation 
between extracted features and esthetic outcome assessed by 
medical specialists. Regarding the system dedicated to tumor 
detection from breast T1-weighted MRI images, it success-
fully generated a dataset of local radiomics and likelihood 
features from resampled images.

The effectiveness of these features was also confirmed by 
training several machine learning models to predict tumor 
region voxel by voxel. Trained with 2514 data samples, the 
RF model with combined radiomics and likelihood features 
achieved the best assessment in terms of sensitivity, f1, and 
accuracy, while the RF model with only radiomics features 
had the highest precision. In order to further validate the 
system’s capabilities and broaden its applicability, it is nec-
essary to consider additional modalities and diagnostic pur-
poses in future investigations.

Acknowledgements This work was supported by JSPS Core-to-Core 
Program (grant number: JPJSCCB20230005).

Author Contributions The manuscript was written by My N. Nguyen 
and revised by all other co-authors. The main process flow was formerly 
designed by Kotori Harada, Takahiro Yoshimoto, and Nam Phong 
Duong and improved by My N. Nguyen to accommodate its appli-
cability in various modalities and diagnostic purposes. Dr. Yoshihiro 
Sowa was in charge of preparing 3D breast images and giving advices 
on medical aspects of esthetic outcome evaluation. Investigation of 
3D breast images was performed by Kotori Harada, Takahiro Yoshi-
moto, and Nam Phong Duong. Dr. Koji Sakai gave advices on medical 
aspects of breast cancer and radiomics feature extraction. Investigation 
of MRI breast images was performed by My N. Nguyen. Dr. Masayuki 
Fukuzawa initialized, supervised and ensured the integrity of the study.

Funding This work was supported by JSPS Core-to-Core Program 
(grant number: JPJSCCB20230005).

 Data Availability The dataset of 3D breast images is not open to public 
due to institutional protocol. As for the dataset of MRI breast images, 
it was obtained from a public source at https:// doi. org/ 10. 7937/ TCIA. 
e3sv- re93.

Declarations 

Conflict of Interest The authors declare no conflicts of interest.

Ethics Approval System development of this study is an observational 
study that does not require ethical approval and all the clinical data was 
obtained after anonymization. The 3D breast image was acquired with 
opt-out consent at the previous affiliated medical institutions (Kyoto 
Prefectural University of Medicine and Kyoto University) of the author 
(Sowa) under the approval of their ethics committee.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

 1. Mann RM, Cho N, Moy L. Breast MRI: state of the art. Radiology. 
2019;292(3):520–36. https:// doi. org/ 10. 1148/ radiol. 20191 82947.

 2. Herent P, Schmauch B, Jehanno P, et al. Detection and characteri-
zation of MRI breast lesions using deep learning. Diagn Interv 
Imaging. 2019;100(4):219–25. https:// doi. org/ 10. 1016/j. diii. 2019. 
02. 008.

 3. Mokni R, Gargouri N, Damak A, Sellami D, Feki W, Mnif Z. An 
automatic computer-aided diagnosis system based on the multi-
modal fusion of breast cancer (MF-CAD). Biomed Signal Process 
Control. 2012;69: 102914. https:// doi. org/ 10. 1016/j. bspc. 2021. 
102914.

 4. Dai X, Huang L, Qian Y, et al. Deep learning for automated cer-
ebral aneurysm detection on computed tomography images. Int J 
Comput Assist Radiol Surg. 2020;15:715–23. https:// doi. org/ 10. 
1007/ s11548- 020- 02121-2.

 5. Ueda D, Yamamoto A, Nishimori M, et al. Deep learning for MR 
angiography: automated detection of cerebral aneurysms. Radi-
ology. 2019;290(1):187–94. https:// doi. org/ 10. 1148/ radiol. 20181 
80901.

 6. Li X, Shen L, Xie X, et al. Multi-resolution convolutional net-
works for chest X-ray radiograph based lung nodule detection. 
Artif Intell Med. 2020;103: 101744. https:// doi. org/ 10. 1016/j. 
artmed. 2019. 101744.

 7. Juan J, Monsó E, Lozano C, et al. Computer-assisted diagnosis 
for an early identification of lung cancer in chest X rays. Sci Rep. 
2023;13(1):7720. https:// doi. org/ 10. 1038/ s41598- 023- 34835-z.

 8. Harada K, Yoshimoto T, Duong NP, Nguyen MN, Sowa Y, 
Fukuzawa M (2024) A new integrated medical-image process-
ing system with high clinical applicability for effective dataset 

https://doi.org/10.7937/TCIA.e3sv-re93
https://doi.org/10.7937/TCIA.e3sv-re93
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1148/radiol.2019182947
https://doi.org/10.1016/j.diii.2019.02.008
https://doi.org/10.1016/j.diii.2019.02.008
https://doi.org/10.1016/j.bspc.2021.102914
https://doi.org/10.1016/j.bspc.2021.102914
https://doi.org/10.1007/s11548-020-02121-2
https://doi.org/10.1007/s11548-020-02121-2
https://doi.org/10.1148/radiol.2018180901
https://doi.org/10.1148/radiol.2018180901
https://doi.org/10.1016/j.artmed.2019.101744
https://doi.org/10.1016/j.artmed.2019.101744
https://doi.org/10.1038/s41598-023-34835-z


SN Computer Science           (2024) 5:676  Page 11 of 11   676 

SN Computer Science

preparation in ML-based diagnosis. In: Thai-Nghe N, Do TN, 
Haddawy P (eds) Intelligent systems and data science. ISDS 2023. 
Communications in computer and information science, vol 1950. 
Springer, Singapore, pp 41–50

 9. Willemink MJ, Koszek WA, Hardell C, et al. Preparing medical 
imaging data for machine learning. Radiology. 2020;295(1):4–15. 
https:// doi. org/ 10. 1148/ radiol. 20201 92224.

 10. Tagliafico AS, Piana M, Schenone D, Lai R, Massone AM, Hous-
sami N. Overview of radiomics in breast cancer diagnosis and 
prognostication. The Breast. 2020;49:74–80. https:// doi. org/ 10. 
1016/j. breast. 2019. 10. 018.

 11. Cardoso MJ, Cardoso J, Amaral N, et al. Turning subjective 
into objective: the BCCT.core software for evaluation of cos-
metic results in breast cancer conservative treatment. The Breast 
2007;16(5):456–461. https:// doi. org/ 10. 1016/j. breast. 2007. 05. 
002.

 12. Krois W, Romar AK, Wild T, et al. Objective breast symmetry 
analysis with the breast analyzing tool (BAT): improved tool for 
clinical trials. Breast Cancer Res Treat. 2017;164:421–7. https:// 
doi. org/ 10. 1007/ s10549- 017- 4255-z.

 13. Soror T, Lancellotta V, Kovács G, et al.  kOBCS©: a novel soft-
ware calculator program of the objective breast cosmesis scale 
(OBCS). Breast Cancer. 2020;27:179–85. https:// doi. org/ 10. 1007/ 
s12282- 019- 01006-w.

 14. Kurt S, İlgün AS, Özkurt E, et al. Outcomes of reconstructive 
techniques in breast cancer using BCCT.core software. World 
Journal of Surgical Oncology. 2024;22(1):82. https:// doi. org/ 10. 
1186/ s12957- 024- 03343-3.

 15. Trakis S, Lord H, Graham P, Fernandez R. Reliability of the 
BCCT.core software in evaluation of breast cosmesis—a system-
atic review. Journal of Medical Imaging and Radiation Oncology 
2021;65(6):817–825. https:// doi. org/ 10. 1111/ 1754- 9485. 13190.

 16. Intel Realsense L515, https:// www. intel reals ense. com/ lidar- cam-
era- l515. Last accessed 25 Mar 2024.

 17. Saha A, Harowicz MR, Grimm LJ, et al. A machine learning 
approach to radiogenomics of breast cancer: a study of 922 sub-
jects and 529 DCE-MRI features. Br J Cancer. 2018;119(4):508–
16. https:// doi. org/ 10. 1038/ s41416- 018- 0185-8.

 18. Kumar V, Gu Y, Basu S, et al. Radiomics: the process and the 
challenges. Magn Reson Imaging. 2021;30(9):1234–48. https:// 
doi. org/ 10. 1016/j. mri. 2012. 06. 010.

 19. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more 
than pictures, they are data. Radiology. 2016;278(2):563–77. 
https:// doi. org/ 10. 1148/ radiol. 20151 51169.

 20. Van Griethuysen JJ, Fedorov A, Parmar C, et al. Computational 
radiomics system to decode the radiographic phenotype. Can 
Res. 2017;77(21):e104–7. https:// doi. org/ 10. 1158/ 0008- 5472. 
CAN- 17- 0339.

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1148/radiol.2020192224
https://doi.org/10.1016/j.breast.2019.10.018
https://doi.org/10.1016/j.breast.2019.10.018
https://doi.org/10.1016/j.breast.2007.05.002
https://doi.org/10.1016/j.breast.2007.05.002
https://doi.org/10.1007/s10549-017-4255-z
https://doi.org/10.1007/s10549-017-4255-z
https://doi.org/10.1007/s12282-019-01006-w
https://doi.org/10.1007/s12282-019-01006-w
https://doi.org/10.1186/s12957-024-03343-3
https://doi.org/10.1186/s12957-024-03343-3
https://doi.org/10.1111/1754-9485.13190
https://www.intelrealsense.com/lidar-camera-l515
https://www.intelrealsense.com/lidar-camera-l515
https://doi.org/10.1038/s41416-018-0185-8
https://doi.org/10.1016/j.mri.2012.06.010
https://doi.org/10.1016/j.mri.2012.06.010
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1158/0008-5472.CAN-17-0339
https://doi.org/10.1158/0008-5472.CAN-17-0339

	Integrated Dataset-Preparation System for ML-Based Medical Image Diagnosis with High Clinical Applicability in Various Modalities and Diagnoses
	Abstract
	Introduction
	Dataset Preparation in ML-Based Medical Image Diagnosis
	Common Part for Image Acquisition, Anonymization and Annotation
	ModalitySubject-Dependent Part for Preprocessing and Feature Extraction

	Procedure of Image Acquisition, Anonymization and Annotation
	Processing of 3D Breast Images for Geometric Feature Extraction
	Processing of Breast MRI Images for Radiomics Feature Extraction
	Material
	Creation of Thumbnail Images
	Preprocessing and Feature Extraction
	Experimental Result
	Time Performance
	Feature Effectiveness


	Conclusion
	Acknowledgements 
	References


